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The Travelling Wave 
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This is one of a set of articles available for download from the website www.designemc.info  

Comments  will be welcome.  

 

1 Introduction 

 

This article provides traceability between the equations of transmission line theory [1] and 

the circuit models used to simulate the transient responses of electrical systems [2]. 

 

The equations which define the behaviour of transient signals along the length of a twin-

conductor transmission line are derived. The derivation and equations can be found in any 

book on Electromagnetic Theory. This article simply condenses the reasoning into a few 

pages using mathematics which is understandable to any student of Electrical Engineering. 

 

The starting point is the definition of the circuit parameters in terms of distributed 

components. Then the circuit equations are derived for a minute section of the line.  

Since current flows in a loop, along one conductor and back via the other, all the electrical 

parameters are defined as loop parameters. That is, they include the properties of both 

conductors. This avoids the need to invoke the concept of the equipotential conductor; and 

enables a better understanding to be reached of the mechanisms involved. 

 

It is assumed that an alternating voltage is applied to the input terminals. To maintain a clear 

distinction between voltages and currents analysed in the frequency domain and those of the 

time domain, a distinctive font and colour is used for phasors. This distinction makes it 

possible to separate parameters which are functions of frequency from those which are 

functions of time and distance, and hence to identify the relationships of the travelling wave. 

 

Expressions for the voltage developed along the conductors due to inductive effects and the 

voltage between the conductors due to capacitive effects are formulated. This leads to a pair 

of second order differential equations. A solution is identified, and it is shown that the 

current and voltage propagate along the line in the form of a travelling wave. Equations for 

the characteristic impedance and the propagation velocity are derived.  

By limiting the analysis to the forward propagation of the wavefront, the mathematics is kept 

as simple as possible. By ignoring the effect of a backward-flowing wave, it is possible to 

show that the ratio of the rate of change of voltage with distance along the line to the rate of 

change of current with distance is also equal to the characteristic impedance. This means that 

if a voltage step is applied to the input terminals, then the current delivered to the line also 

undergoes a step change.  
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2 Characteristic Impedance 

 

Figure 1 illustrates how voltage and current can vary along the length of a transmission line. 

For the purpose of deriving the transmission line equations, the following definitions apply: 

R = loop resistance per unit length: / m  

L = loop inductance per unit length: H/m 

C = loop capacitance per unit length: F/m 

G = loop conductance per unit length: S/m 

The parameters V and I are phasors, that is, functions of frequency. They are related to the 

peak voltage V and peak current I by: 

 
j tV e   V  (1) 

 
j tI e   I  (2) 

where 

 2 f     (3) 

and f is the frequency of the signal. 

 

Fig. 1   Circuit model of one section of twin-conductor transmission line. 

Voltage and current are also functions of x. For the finite section dx: 

  R j L dx dx dx
x x

 
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 
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Hence  

  R j L
x





     

V
I  (6) 

  G j C
x





     

I
V  (7) 

This removes the parameter dx from the analysis, temporarily. Differentiating (6) gives  

      
2

2
R j L R j L G j C

x x

 
  

 
              

V I
V  (8) 

Differentiating (7) gives 

      
2

2
G j C G j C R j L

x x

 
  

 
              

I V
I  (9) 

Substituting 
2 for    R j L G j C        in (8):    

 
2

2

2x





 

V
V  (10) 

That is  

    R j L G j C           (11) 

Equation (10) can be derived from:  

 
xe   V Vn  (12) 

where Vn  is the source voltage at the near end of the line. 

 
j tVn e   Vn  (13) 

 and Vn is the peak amplitude of  Vn . Differentiating (12): 

 
xe

x






    
V

Vn  (14) 

Differentiating a second time results in equation (10).  

 
2

2 2

2

xe
x


 



     
V

Vn V  

This confirms that equation (10) is valid. 

Re-arranging equation  (6): 



 

January 2018 The Travelling Wave Page 4 of 11 

 
1

R j L x



 
  

  

V
I  

Using (14) to substitute for 
x





V
 

 
xe

R j L





   
  

I Vn  (15) 

Using (12) to substitute for 
xe  Vn  

 
R j L




 

  
I V  (16) 

Using (11) to substitute for   

 
G j C

R j L





  
 

  
I V  (17) 

That is  

 
Zo


V

I  (18) 

where Zo is defined as the characteristic impedance: 

 
R j L

Zo
G j C





  


  
 (19) 

3 Velocity as a function of frequency 

Since it is defined in terms of complex numbers,  is a complex number. So it can be 

defined as:  

 j      (20) 

 is described as the propagation constant,  as the wavelength factor and  as the 

attenuation factor. Using (20) to substitute for  in (12)  

  j x
e

    
 V Vn  

The voltage V at any instant t at the location x can be calculated by invoking the relationship 

defined by equation (1) 

 
 j xj tV Vn e e
          

Re-arranging 
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x
j t

xV Vn e e




 

 
         (21) 

This is an equation of the form 

 

x
j t

x vV Vn e e




 
         (22) 

where v is defined as: 

 v



  (23) 

4 The travelling wave 

If, in equation (22), the term 
x

t
v


 
  
 

is treated as a constant :  

 
x

t
v





 
  

 
 

giving        x v t




 
   

 
 

            
dx

v
dt

  

Since  is constant and 0  then 
je 

is constant and 1xe    . Under these conditions, V of 

equation (22) is constant. For this to happen, x must be increasing at the rate v as t increases. 

The relationship is similar to that of a surfer riding a wave. So long as the surfer maintains a 

fixed position on the wave, an observer sees the board and occupant travelling rapidly 

towards the shore. 

Substituting for  in (23)  

 
2 f

v




 
  

If   is the time taken for a complete cycle 

 
2 1

v


 


   

If  is the distance travelled in time   

 
2 1

v
 

  


    
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Giving 

 
2 





  (24) 

5 Lossless line 

It the line is lossless, then 0R  , 0G  , and 0  . So, from (11) 

    j j L j C j L C               

So 

 L C     (25) 

and, from  (23) 

 
1

v
L C




 


 (26) 

Also, from (19) 

 
L

Ro
C

  (27) 

Since the ratio of inductance to capacitance is a real number, then, for a lossless line, the 

impedance Zo can have no imaginary component. So it is defined to be a pure resistance in 

equation (27).  

From (18) 

 Ro V I  

Hence 

 
j t j tV e Ro I e         

 V Ro I   (28) 

This means, that, for a lossless line, The load presented to the input terminals is constant. It 

does not matter what circuitry is present at the far end.  

6 Rates of change 

It has been shown that, if a sine wave signal is applied to the input terminals of a 

transmission line, then that signal will propagate along that line at a velocity given by 

equation (26). A further characteristic of  the line can be identified: 

Differentiating (15) with respect to x: 
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2

xe
x R j L

 

 

 
  

  

I
Vn   (29) 

Dividing (14) by (29): 

 
2

x

x

R j L
e

x x e





 


  

 

 

  
    

  

V I
Vn

Vn

 

giving 

 
R j L

x x

 

  

  


V I
 

Using (11) to substitute for   

 
R j L

x G j C x

  

  

  
 

  

V I
 

Invoking (19) 

 Zo
x x

 

 
 

V I
 (30) 

For a lossless line: Ro
x x

 

 
 

V I
 

and j t j tdV dI
e Ro e

dx dx

         

 giving  
dV dI

Ro
dx dx

   (31) 

 

 

 

Figure 2 Propagation of a sine wave along transmission line 
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That is, as well as the current being proportional to the voltage at any point x, the rate of 

change of current with distance is also proportional to the rate of change of voltage with 

distance. Figure 2 illustrates this. The significant feature of the relationship is that there is no 

phase difference between the two parameters, whatever the frequency. 

For a lossless line, the step between equation (30) and (31) causes the frequency parameters 

 and f to drop out of the equations.  

7 Response to a step voltage 

If a step voltage is applied, the resulting change in current is also a step change. At the first 

instant after a change is applied at the near end of a transmission line the voltage and current 

waveforms propagate along the line at a velocity defined by equation (26). Figure 3 

illustrates this.  

 

 

Figure 3 Propagation of a step voltage and a step current along a transmission line. 

 

The key feature about the relationship depicted in Figure 3 is the fact that an instantaneous 

change in voltage is accompanied by an instantaneous change in current. The relationship 

between current and voltage is defined by equation (28). 

With a step waveform, the initial step is followed by a steady flow of current I into the line. 

Behind the wavefront, the voltage is also constant.  

8 Propagation velocity. 

If it is assumed that the transmission line is configured as a twin-conductor cable, then the 

value of the inductance per unit length will be  

 lno r sep
L

rad

 



  
   

 
 (32) 
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where rad is the radius of each conductor, sep is the separation between the centres, o is the 

permeability of free space and r is the relative permeability of the conductor. 

The capacitance per unit length will be: 

 

ln

o rC
sep

rad

   


 
 
 

 (33) 

where o is the permittivity of free space r is the average relative permittivity of the 

insulation between the conductors. The velocity of propagation is  

 
1 1

o r o r

v
L C    

 
   

 (34) 

The velocity of light in a vacuum is 

 
1

o o

c
 




 (35) 

Since the velocity of light is a constant, the parameters r and r effectively define the actual 

velocity of propagation. The value of r  is the property of the conductors. It can be assumed 

that, for copper, 1r  . The value of r is the property of the insulating material. Since more 

than one type of material is involved in insulating one conductor from another, it is difficult 

to assign a value to the relative permittivity, even when data is available on the properties of 

each type of insulation. 

There is another factor to consider. The transmission line model of Figure 1 depicts two 

conductors, where current flows along the send conductor, across the gap between the 

conductors, and back along the return conductor. It also indicates the current flows back 

along the return conductor and then across the gap into the send conductor. Time will be 

spent in criss-crossing the gap between the conductors. This will delay the arrival of the 

leading edge at the far end.  

However, by measuring the time it takes for the leading edge to propagate along a sample 

length of cable, the velocity of propagation can be measured and a value assigned to r . This 

value can be used when analysing the characteristics of any signal carried by that type of 

cable.  

9 Propagation time 

If the length of the line is len, then the time T for the leading edge to propagate from the near 

end of the line to the far end is 
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len

T
v

  (36) 

 

Since the current I is constant, the charge delivered to the line at time T will be 

 Q I T   (37) 

For the length len, the actual capacitance Ca between the conductors is 

 Ca C len   (38) 

and the voltage between the conductors is 

 
Q

V
Ca

  (39) 

The fact that charges have been delivered to the entire length of the line during time T means 

that, as far as electromagnetic theory is concerned, charge propagates at a speed comparable 

to that of light. 

10 The return conductor 

Figure 1 illustrates the fact that current flows along the send conductor, across the gap 

between the two conductors, back along the send conductor and then back across the gap 

into the send conductor.  

The reason that current flows back into the send conductor is due to the existence of the 

voltage developed along the return conductor. If the voltage along the return conductor did 

not exist, then current would flow out of the send conductor and disappear into the 

environment.   

This leads to two conclusions. 

Two conductors are necessary to steer the electromagnetic energy along the path 

defined by the routing of the cable. 

In any functioning electronic system, there is no such thing as an equipotential 

conductor.  

11 Conclusion 

It has been shown that electrical signals propagate along a twin-conductor transmission line 

in the form of a travelling wave. Formulae for the characteristic impedance and the 

propagation velocity have been defined in terms of distributed parameters; ohm/metre, 

Henry/metre, Farad/metre, and mho/metre. 

When a step voltage is applied to the input terminals, the waveform of the current also 

undergoes a step change. There is no delay between the application of a voltage and the 
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creation of a current. An instantaneous change in voltage is accompanied by an 

instantaneous change in current. For this to happen, current and voltage must be 

manifestations of the same mechanism; the flow of charge. 

It has been shown that the velocity of propagation of the electromagnetic energy is slowed 

down by the fact that current flows between the conductors as well as along the conductors. 

The phenomenon can be catered for in any circuit model by assigning a value to the relative 

permittivity. 

It has also been shown that two conductors are necessary to ensure the efficient transmission 

of energy from source to load, and that there is no such thing as an equipotential conductor. 
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